Conditions for admission to postgraduate studies

PROGRAM

entrance exam for postgraduate studies in specialty 05.09.08 “Applied acoustics and sound engineering”

1. Patterns and properties of multimedia propagation of acoustic waves (in gases, liquids and solids)

1.1. General equations of acoustics for liquids and gases and elastic waves in solids

Complete system of acoustic equations and its linearization. The principle of superposition. Wave Equation. Helmholtz equation. Boundary conditions. Hard elastic body as an acoustic medium. Scalar and vector potentials. General equations of propagation of waves in solids. Boundary conditions for solids.

1.2. Harmonious wave movements

Harmonious waves. Flat, cylindrical and spherical waves. Sound absorption. Reflection and sound transmission on the boundary between two acoustic environments. Reflection of sound from the moving edge. Spectral decomposition of the sound field. Waveguides and sound propagation in them (common cases). The concept of group and phase velocity. Influence of the dispersion of the speed of sound in the medium on the propagation of sound impulse.
Acoustics of environments with gradually changing parameters. Radiation theory. Equation of radial acoustics. Equation of eikanal. Wave equation of heterogeneous environment. Transfer equation. Fronts and rays. Equation of rays. Sound propagation in a stratified environment. Curvature of the ray. The method of constructing rays. Time of signal propagation along the beam. The procedure for calculating the acoustic field by the method of radial acoustics.
Acoustic waveguides. Normal waves in a waveguide with impedance boundaries. Own waves in a layer of homogeneous fluid with free boundaries. Waves in a planar waveguide with partially absorbing boundaries. Wave propagation in a waveguide with parallel boundaries. Distribution of sound at sea. Stationary waves Round tube as a wave guide. Excitation of waves in a planar waveguide by a point source.
Longitudinal and transverse waves in an isotropic solid. Reflection and refraction of longitudinal and transverse waves. Rayleigh Surface Waves. Waves in plates and rods.
Acoustic cavitation. Cavitation area and cavitation thresholds. Propagation of sound in a medium with bubbles. Acoustic emission.
The fall of plane waves on the boundary of the distribution of the two media. Input impedance. Passage of a sound wave through a flat layer.
Fundamentals of the theory of radiation. Spectrum sound. Monopoly Dipole The concept of a distant field. Radiation of sound by a cylinder. The task of admission. Scattered field. Full field. Acoustic field when scattered on an acoustically hard (soft) object.

2. Regularities, general principles, phenomena and effects of transformation of acoustic signals into electrical and vice versa

2.1. Piling in systems with lumped and distributed parameters

Harmonic Oscillator. Oscillator in the presence of damping. Free oscillations in the system with two degrees of freedom. General solution of the equation of motion of a string. Properties of the membrane. Equation of movement of a membrane element. Rectangular membrane. Round membrane.

2.2. Fundamentals of mechanics of electrically elastic deformed solid

Basic concepts and definitions. Tensors of strain and strain. The equation of the state of solids with piezoelectric effects. The main relations of the piezoelectric effect. Generalized Hooke’s law. P’esrocrystals and p’esokeramic materials. General information on acoustoelectronics. Delay lines and filters that use counter-pin transducers. Resonators and filters on surface waves. Acoustoelectric effect. Acousto-optics The diffraction of light on the surface acoustic waves. Acoustics of liquid crystals.

2.3. Electroacoustic transformation of energy

Ways of converting energy and form of oscillations used in converters. Electromechanical and mechanoacoustic transformation. Theorem of electromechanical reciprocity of external actions. Methods of calculations of electroacoustic converters – the method of bound fields, the method of equivalent electromechanical circuits, the method of four-pole. Types of piezoceramic converters: cylindrical; rod; lamellar; contact; contactless and mixed type. Other types of converters: electrodynamic and capacitor.
Acoustic antennas and their distinctive features. Types of physical fields operating in antennas, and their features. Classification of acoustic antennas. Basic parameters of antennas in the mode of radiation and their determination. Basic parameters of antennas in the mode of reception and their definition. Types of interactions that take place in acoustic antennas, and conditions for their existence.
System converters when working in multimedia environments.
A general approach to the formation of spatially-selective properties of systems of converters and antennas on their basis. Amplitude-phase characteristics of the direction and the issue of synthesis of antenna systems. Combined p-v reception systems. Application of the ideology of on-line management. Formation of the directed qualities of discrete continuous linear and surface interfree antenna systems. Focused aerials and systems for sound and ultrasonic frequency range. Coefficients of concentration of sound energy in antenna systems.

2.4.General methods for determining the sound fields

General methods for determining the sound fields generated by acoustic antennas and transducers. Canonical and non-canonical areas of sound field existence. Green’s function for the Helmholtz equation for free space. Green’s function for half-space. Huygens principle. Zomerfeld radiation condition. Kirchhoff’s method of determining the field of reflection of sound from a flat disk and the representation of the Fresnel zone. The main provisions of the method of partial areas. The method of its own wave functions. Complexity theorem.

3.Technology and devices of processing of electroacoustic and sound signals using acoustic effects

3.1. Theory of processes and systems

Orthogonal decompositions in the Hilbert space. Spectral analysis of deterministic processes. Time and spectral analysis of linear transformations of deterministic processes. Amplitude and frequency modulation. Distribution function, probability density, and characteristic function of random processes. One-dimensional and two-dimensional instantaneous functions of a random process. Random processes stationary in a narrow and broad sense. Spectral characteristics of random processes. Analysis of linear systems under the influence of random processes. Analysis of nonlinear systems under the influence of random processes. Spectra and correlation functions of acoustic signals. Measurement of auto- and inter-correlation functions. Methods and tools for measuring impulse and transient characteristics. Methods for estimating random errors. Characteristics of signals used: a) in a passive location; b) in active location; their primary and secondary informative parameters. Statistical theory of detecting a signal disguised as a disturbance. The theory of optimal signal reception with known parameters.

3.2. Methods, technologies and devices for the processing of electroacoustic and acoustic signals

Transformation: a) Walsh; b) Hartley; c) Hoaara Wavelet transform. Fast conversion algorithms. Multifunctional acoustic signal processing. Encoding of audio signals: a) without loss; b) with losses; c) with division into strips. Quantization and sampling of acoustic signals. Digital methods (algorithms) for processing audio signals. Optical methods for processing audio signals. Optimal (for Chebishov) non-recursive filters. Features of digital filtration using discrete Fourier transform. Fourier Fourier Transform: A mechanism for reducing the number of arithmetic operations. Estimation of probability density of stationary random process (SVP) by histogram method. Point (continuous and discrete) estimations of mathematical expectation and dispersion of SVP. Intervals (continuous and discrete) estimates of mathematical expectation and variance of SVP. Point (continuous and discrete) estimates of the correlation function of the SVP. Wiener-Hinchin theorem. Two-sided and one-sided power spectrum. Nonparametric estimations of the SVP power spectrum: crude and modified periodograms, estimates of Bartlett and Welch. Parametric estimates of the power spectrum of the SVP.
System converters when working in multimedia environments.
General transition to the formation of spatially-selective properties of systems of converters and antennas on their basis. Amplitude-phase characteristics of the direction and the issue of synthesis of antenna systems. Combined p-v properties of the system. Application of the ideology of on-line management. Formation of the directed qualities of discrete continuous linear and surface interfree antenna systems. Focused aerials and systems for sound and ultrasonic frequency range.
Coefficients of concentration of sound energy in antenna systems.

3.3. Technologies and hardware created using acoustic effects

Correlation and structural methods for the implementation of acoustic direction finding: a) amplitude; b) phase; c) correlation. Doppler effect and structural flow diagram of the method of measuring the speed. Defectoscopy equation for echo-pulse method. Physical bases of acoustic holography and methods of obtaining acoustic holograms. Correlation receiver. The optimal receiver is a coherent filter. Condition for harmonization of signal and filter characteristics.

4.Technologies and devices for creation of a real sound environment. Modeling of acoustic properties of the auditory and speech apparatus

4.1.Technologies and devices for creating a real sound environment for mass audiences and individuals.

The theory of architectural acoustics. Acoustic calculation of the room. Anterior estimates of indoor sound quality (analysis of the early part of the reverberation process, indexes of clarity and sound quality).
Theoretical sound insulation provisions of the premises. Physical essence of sound insulation. Sound insulation of a single-layer partition. Rigid partition. Law of the masses Soft partition. The law of elasticity. Effect of slits and openings. Calculation of soundproofing of premises.
Direction of sources and sound receivers. Oscillation coefficient. Directional properties of the linear eccentric group of circular screened converters. Direction of rectangular flat transducers.
Efficiency of the radiator. Resistance to radiation of a round piston, depending on the external design (endless screen, without external design, closed capsule). Radiator of sound by a group of radiators.
Electrodynamic speakers. Nonlinear parametric, modulation distortion. Acoustic systems. Sound speakers
Exterior design of sound emitters (screen, open and closed capsule, phase-inverter).
Audio and sound amplification in the rooms and in the open space. Ways of approximating the characteristics of the direction of the emitters of sound. Calculation of the sound field in the listener’s plane. Reverse acoustic communication. Effect of reverberation properties of the room on the parameters of the sound amplification.
Stereo sound reproduction systems. Stereo microphone systems. Quasiophonic and stereo ambiophonic systems. Binary system of sound transmission. Multichannel systems. Sound systems Dolby. Universal audio signal format.

4.2. Modeling of acoustic properties of the auditory and speech apparatus

Modeling of acoustic properties of auditory and linguistic apparatus, psychoacoustic mechanisms, development of corrective hearing aids.
Auditory characteristics of the sound. Volume tonal and complex signals. Height is tone. Frequency and time masking sound. Localization of a sound source in space. Stereo effect. Speech characteristics of the language. The process of language formation. Voice and non-voice sources. Acoustic model of the speech tract. F-picture and Z-picture of speech sounds. Distinctive characteristics of the singing voice. Legibility of language.
Structure and function of the auditory and speech apparatus of a person. Frequency and dynamic range of auditory perception, physical and physiological characteristics of acoustic signals. Perception of volume, connection by volume level and level of sound power. Differential thresholds of perception, height of tone, nonlinear distortions. Binaural effect. Masking sounds. Spectral composition of language and music.

4.3.Questions of acoustic ecology

Models of noise pollution of the environment. Normalization of acoustic pollution. Volume and Noise Scales. Main areas of organization, development and implementation of acoustic monitoring and acoustic expertise.
Systems of protection of people from noise influences.
The question of acoustic ecology. Models of noise pollution of the environment. Normalization of acoustic pollution. Volume and Noise Scales. Main areas of organization, development and implementation of acoustic monitoring and acoustic expertise.
Systems of protection of people from noise influences.

5. Electroacoustic and electromagnetic compatibility of sound engineering systems. Development of means of oppression and protection against leakage of electroacoustic and audible signals

The question of acoustic ecology. Models of noise pollution of the environment. Normalization of acoustic pollution. Volume and Noise Scales. Main areas of organization, development and implementation of acoustic monitoring and acoustic expertise.
Systems of protection of people from noise influences.
Measurement of noise and vibration.

5.1. Electroacoustic compatibility of sound engineering systems. Inhibition of noise and protection against leakage of electroacoustic signals

The problem of electroacoustic compatibility of technical means with susceptible elements. Means for electromagnetic compatibility of electroacoustic complexes with electroacoustic network and functional units (separate devices). Means of muffling and protection against leakage of information in the range of frequencies of electroacoustic and audible signals. Features of parasitic channels of propagation of signals of the sound range, sources and receptors of electromagnetic interference in the complex of audio-video equipment. Peculiarities of application of contraband filters in the electric network and information paths. Means of testing of electroacoustic equipment in relation to conduit and in the surrounding space.

5.2. Means of mute and protection against leakage in the frequency range of the sound signals

Basic descriptors used to describe noise loads on volume and noise levels. Physical interpretation, comparison, field of application. Acoustic monitoring. Basic definitions, structure, procedure and documentation. Organization of monitoring of traffic noise load. Acoustic examination. Basic definitions, procedure and documentation. Organization of acoustic and electromagnetic expertise of objects that create acoustic and electromagnetic interference of high levels.

LIST OF REFERENCES

  1. Акустика в задачах / Под ред. С.Н.Гурбатова и О.В.Руденко. –  М.: Наука, 1996. – 336 с.
  2. Андреева И.Б. Физические основы распространения звука в океане. – Ленинград: Гидрометеоиздат, 1975. – 192 с.
  3. Бреховских Л.М., Гончаров В.В. Введение в механику сплошных сред. –  М.: Наука, 1982. – 335 с.
  4. Вахитов Я.М. Теоретические основы электроакустики и электроакустическая аппаратура. –  М.: Искусство, 1982. – 415 с.
  5. Голдстейн Мэрвин Е. Аэроакустика Пер. с англ. –  М.: Машиностроение, 1981. – 294 с.
  6. Гринченко В.Т., Мелешко В.В. Гармонические колебания в упругих телах. – К.: Наукова думка, 1981. – 284с.
  7. Грінченко В.Т., Дідковський В.С., Маципура В.Т. Теоретичні основи акустики: Навч. посібник. – К.: ІЗМН, 1998. – 376 с.
  8. Гринченко В.Т., Вовк І.В., Маципура В.Т. Основи акустики. – К.: «Видавництво НВП «Наукова думка» НАН України», 2009. – 867с.
  9. Гринченко В.Т., Вовк И.В., Маципура В.Т. Основы акустики. – К.: Наукова думка, 2009. – 640 с.
  10. Грінченко В.Т., Дідковський В.С., Акименко В.Я., Запорожець О.І., Токарєв В.І. Основи акустичної екології: Навч.посібник. – Кіровоград: Імекс-ЛТД, 2002. – 520 с.
  11. Дідковський В.С., Луньова С.А. Основи архітектурної та фізіологічної акустики:  Навч.посібник. – К.: Аван-постприм, 2001. – 424 с.
  12. Дідковський В.С., Маркелов П.О. Шум і вібрація: Підручник. – К.: Вища школа, 1995. – 264 с.
  13. Дьелесан Э., Руайе Д. Упругие волны в твердых телах. Применение для обработки сигналов: Пер. с франц. – М.: Наука, 1982. – 424 с.
  14. Исакович М.А. Общая акустика. – М.: Наука, 1973. – 496 с.
  15. Кайно Г. Акустические волны: Устройства, визуализация и аналоговая обработка сигналов: Пер.с англ. – М.: Мир, 1990. – 656 с.
  16. Некоторые вопросы нелинейной акустики. Методические указания к дисциплине “Ультразвук и его применение”/ Сост.В.Б.Галаненко. – К.: КПИ, 1986. – 48 с.
  17. Неразрушающий контроль. В 5 кн. Кн.2. Акустические методы контроля: Практ. пособие / Под ред. В.В.Сухорукова. – М.: Высш.шк., 1991. – 283 с.
  18. Применение ультразвука в медицине: Физические основы: Пер.с англ. / Под ред. К. Хилла. – М.: Мир, 1989. – 568 с.
  19. Тюлин В.Н. Введение в теорию излучения и рассеяния звука. – М.: Наука, 1976. – 256 с.
  20. Физические основы ультразвуковой технологии / Под ред. Л.Д. Розенберга. – М.:  Наука, 1970. – 685 с.
  21. Фильтры на поверхностных акустических волнах (расчет, технология и применение) Пер.с англ. / Под ред. Г. Мэттьюза. – М.: Радио и связь, 1981. – 472 с.
  22. Хорунжий В.А. и др. Акустоэлектроника. – К.: Техніка, 1984. – 152 с.
  23. Дідковський В.С., Лейко О.Г., Савін В.Г. Електроакустичні п’єзокерамічні: Навч.посібник. – Кіровоград:Імекс-ЛТД, 2006. – 448 с.
  24. Аронов Б.С. Електромеханические преобразователи из пьезоэлектрической керамики. – Л: Энергоатомиздат, 1990. – 272 с.
  25. Лейко А.Г., Шамарин Ю.Е., Ткаченко В.П. Подводные акустические антенны. Методы расчета звуковых полей. – К.: Аванпосткрим, 2000. – 320 с.
  26. Подводные электроакустические преобразователи. (Расчет к проектирование). Справочник / Под ред. В.В.Богородского. – Л.: Судостроение, 1983. – 248 с.
  27. Скучик Е. Основы акустики, т.1. – М.: Миф, 1976. – 520 с.
  28. Подавление электромагнитных помех в цепях электропитания / Г.С. Векслер, В.С., В.С. Недочетов, В.В. Пилинский и др. – К.: Техніка, 1990. – 167 с.
  29. Кечиев Л.Н., Степанов П.В. ЭМС и информационная  безопасность. – М: изд. дом «Технологии», 2005. – 320 с.
  30. Барнс Дж. Электронное конструирование: методы борьбы с помехами. – М.: Мир 1990 – 283 с.
  31. Уильямс Т. ЭМС для разработчиков продукции. – М.  изд. дом «Технологии», 2004. – 540 с.
  32. Уильямс Т., Армстронг К. ЄМС для систем и установок. – М.  изд. дом «Технологии», 2003. – 508 с.
  33. Пілінський В.В. Електромагнітна сумісність радіоелектронних засобів. Курс лекцій. – К.:   НТУУ «КПІ», 2009. – 377с. (сайт кафедри ЗТРІ)